Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article presents an invariant extended Kalman filter (InEKF) approach for estimating the relative pose and linear velocity of ground robots—either legged or wheeled—using an inertial measurement unit (IMU) attached to the robot, encoders, and an external IMU placed on the moving ground. The approach explicitly accounts for ground motion in noninertial environments, such as ships or airplanes, where the ground rotates or accelerates in the inertial frame. Unlike previous methods, it does not rely on known ground pose. This consideration introduces complexity due to the nonlinear dynamics and kinematics of the reference frame. Despite this complexity, the proposed filter, based on the InEKF methodology, includes a process model that partially satisfies the group affine condition. The leg odometry-based measurement model meets the right-invariant observation form for deterministic scenarios, though the wheel odometry model does not. Observability analysis demonstrates that all state variables are observable during a broad range of ground motions, overcoming the partial observability limitations of previous filters. Experiments on a Digit humanoid robot and a Jackal wheeled robot verify the filter’s effectiveness across various ground motions.more » « lessFree, publicly-accessible full text available June 25, 2026
-
This work investigates the robot state estimation problem within a non-inertial environment. The proposed state estimation approach relaxes the common assumption of static ground in the system modeling. The process and measurement models explicitly treat the movement of the non-inertial environments without requiring knowledge of its motion in the inertial frame or relying on GPS or sensing environmental landmarks. Further, the proposed state estimator is formulated as an invariant extended Kalman filter (InEKF) [1] with the deterministic part of its process model obeying the groupaffine property, leading to log-linear error dynamics. The observability analysis confirms the robot’s pose (i.e., position and orientation) and velocity relative to the non-inertial environment are observable under the proposed InEKF.more » « less
-
This paper reports on developing a real-time invariant proprioceptive robot state estimation framework called DRIFT. A didactic introduction to invariant Kalman filtering is provided to make this cutting-edge symmetry-preserving approach accessible to a broader range of robotics applications. Furthermore, this work dives into the development of a proprioceptive state estimation framework for dead reckoning that only consumes data from an onboard inertial measurement unit and kinematics of the robot, with two optional modules, a contact estimator and a gyro filter for low-cost robots, enabling a significant capability on a variety of robotics platforms to track the robot's state over long trajectories in the absence of perceptual data. Extensive real-world experiments using a legged robot, an indoor wheeled robot, a field robot, and a full-size vehicle, as well as simulation results with a marine robot, are provided to understand the limits of DRIFT.more » « less
-
null (Ed.)In this paper, we extend the recently developed continuous visual odometry framework for RGB-D cameras to an adaptive framework via online hyperparameter learning. We focus on the case of isotropic kernels with a scalar as the length-scale. In practice and as expected, the length-scale has remarkable impacts on the performance of the original framework. Previously it was handled using a fixed set of conditions within the solver to reduce the length-scale as the algorithm reaches a local minimum. We automate this process by a greedy gradient descent step at each iteration to find the next-best length-scale. Furthermore, to handle failure cases in the gradient descent step where the gradient is not wellbehaved, such as the absence of structure or texture in the scene, we use a search interval for the length-scale and guide it gradually toward the smaller values. This latter strategy reverts the adaptive framework to the original setup. The experimental evaluations using publicly available RGB-D benchmarks show the proposed adaptive continuous visual odometry outperforms the original framework and the current state-of-the-art. We also make the software for the developed algorithm publicly available.more » « less
An official website of the United States government

Full Text Available